Package: FinCovRegularization 1.1.0

FinCovRegularization: Covariance Matrix Estimation and Regularization for Finance

Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft- thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.

Authors:YaChen Yan [aut, cre], FangZhu Lin [aut]

FinCovRegularization_1.1.0.tar.gz
FinCovRegularization_1.1.0.zip(r-4.5)FinCovRegularization_1.1.0.zip(r-4.4)FinCovRegularization_1.1.0.zip(r-4.3)
FinCovRegularization_1.1.0.tgz(r-4.4-any)FinCovRegularization_1.1.0.tgz(r-4.3-any)
FinCovRegularization_1.1.0.tar.gz(r-4.5-noble)FinCovRegularization_1.1.0.tar.gz(r-4.4-noble)
FinCovRegularization_1.1.0.tgz(r-4.4-emscripten)FinCovRegularization_1.1.0.tgz(r-4.3-emscripten)
FinCovRegularization.pdf |FinCovRegularization.html
FinCovRegularization/json (API)

# Install 'FinCovRegularization' in R:
install.packages('FinCovRegularization', repos = c('https://yanyachen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/yanyachen/fincovregularization/issues

Datasets:

On CRAN:

4.30 score 7 stars 1 packages 19 scripts 164 downloads 16 exports 1 dependencies

Last updated 8 years agofrom:cd3ff5b5d0. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winNOTEOct 29 2024
R-4.5-linuxNOTEOct 29 2024
R-4.4-winNOTEOct 29 2024
R-4.4-macNOTEOct 29 2024
R-4.3-winNOTEOct 29 2024
R-4.3-macNOTEOct 29 2024

Exports:bandingbanding.cvF.norm2FundamentalFactor.CovGMVPhard.thresholdingInd.CovMacroFactor.CovO.norm2RiskParitysoft.thresholdingStatFactor.Covtaperingtapering.cvthreshold.cvthreshold.min

Dependencies:quadprog